expanded class interface REVERSE_COLLECTION_SORTER[X->COMPARABLE]
--
-- Some algorithms to sort any COLLECTION[COMPARABLE].
--
-- Elements are sorted using the order given by the comparator: large elements at the beginning of the collection, small at the
-- end (increasing order is implemented by class COLLECTION_SORTER).
--
-- How to use this expanded class :
--
-- local
-- sorter: REVERSE_COLLECTION_SORTER[INTEGER]
-- array: ARRAY[INTEGER]
-- do
-- array := <<1,3,2>>
-- sorter.sort(array)
-- check
-- sorter.is_sorted(array)
-- end
-- ...
--
feature(s) from ABSTRACT_SORTER
is_sorted (c: COLLECTION[X]): BOOLEAN
-- Is c already sorted ?
-- Uses lte for comparison.
require
c /= Void
ensure
c.is_equal(old c.twin)
has (c: COLLECTION[X]; element: X): BOOLEAN
require
c /= Void;
is_sorted(c)
ensure
Result = c.has(element)
index_of (c: COLLECTION[X]; element: X): INTEGER
require
c /= Void;
is_sorted(c)
ensure
not c.is_empty implies c.valid_index(Result);
c.has(element) implies c.item(Result).is_equal(element)
add (c: COLLECTION[X]; element: X)
-- Add element in collection c keeping the sorted property.
require
c /= Void;
is_sorted(c)
ensure
c.count = old c.count + 1;
is_sorted(c)
insert_index (c: COLLECTION[X]; element: X): INTEGER
-- retrieve the upper index for wich gt
require
c /= Void;
is_sorted(c)
ensure
c.valid_index(Result) implies gt(c.item(Result),element);
c.valid_index(Result - 1) implies lte(c.item(Result - 1),element);
Result.in_range(c.lower,c.upper + 1)
sort (c: COLLECTION[X])
-- Sort c using the default most efficient sorting algorithm
-- already implemented.
require
c /= Void
ensure
c.count = old c.count;
is_sorted(c)
quick_sort (c: COLLECTION[X])
-- Sort c using the quick sort algorithm.
require
c /= Void
ensure
c.count = old c.count;
is_sorted(c)
von_neuman_sort (c: COLLECTION[X])
-- Sort c using the Von Neuman algorithm.
-- This algorithm needs to create a second collection.
-- Uses infix "<=" for comparison.
require
c /= Void
ensure
c.count = old c.count;
is_sorted(c)
heap_sort (c: COLLECTION[X])
-- Sort c using the heap sort algorithm.
require
c /= Void
ensure
c.count = old c.count;
is_sorted(c)
bubble_sort (c: COLLECTION[X])
-- Sort c using the bubble sort algorithm.
-- Uses infix "<" for comparison.
require
c /= Void
ensure
c.count = old c.count;
is_sorted(c)
end of expanded REVERSE_COLLECTION_SORTER[X->COMPARABLE]